Home
Class 14
MATHS
If log(10)(10x)=2.7532 then log(10) (100...

If `log_(10)(10x)=2.7532` then `log_(10) (10000x)` is

A

4.7532

B

5.7532

C

`3xx2.7532`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{10}(10000x) \) given that \( \log_{10}(10x) = 2.7532 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \log_{10}(10x) = 2.7532 \] 2. **Use the property of logarithms**: We can use the property of logarithms that states: \[ \log_{b}(mn) = \log_{b}(m) + \log_{b}(n) \] Applying this to our equation: \[ \log_{10}(10x) = \log_{10}(10) + \log_{10}(x) \] Therefore, we can rewrite the equation as: \[ \log_{10}(10) + \log_{10}(x) = 2.7532 \] 3. **Calculate \( \log_{10}(10) \)**: Since \( \log_{10}(10) = 1 \), we have: \[ 1 + \log_{10}(x) = 2.7532 \] 4. **Isolate \( \log_{10}(x) \)**: Subtract 1 from both sides: \[ \log_{10}(x) = 2.7532 - 1 = 1.7532 \] 5. **Now, find \( \log_{10}(10000x) \)**: We can express \( 10000x \) as \( 10000 \times x \). Using the logarithm property again: \[ \log_{10}(10000x) = \log_{10}(10000) + \log_{10}(x) \] 6. **Calculate \( \log_{10}(10000) \)**: Since \( 10000 = 10^4 \), we have: \[ \log_{10}(10000) = 4 \] 7. **Substitute the values**: Now substituting back into the equation: \[ \log_{10}(10000x) = 4 + \log_{10}(x) \] Substituting \( \log_{10}(x) = 1.7532 \): \[ \log_{10}(10000x) = 4 + 1.7532 = 5.7532 \] ### Final Answer: \[ \log_{10}(10000x) = 5.7532 \]
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

Evaluate log_10 10000

log_(10){log10x}=1 then x

If log_(10) x+log_(10) y= 3 and log_(10) x-log_(10) y=1, then x and y are respectively a. 10 and 100 b. 100 and 10 c. 1000 and 100 d. 100 and 1000

If log_(10)x+log_(10)y=2, x-y=15 then :

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?