Home
Class 14
MATHS
The value of 3^(-1/2 log3 9) is...

The value of `3^(-1/2 log_3 9)` is

A

`3`

B

`1/3`

C

`2/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3^{-\frac{1}{2} \log_3 9}\), we will follow these steps: ### Step 1: Simplify the logarithm We start with the expression: \[ -\frac{1}{2} \log_3 9 \] We know that \(9\) can be expressed as \(3^2\). Thus, we can rewrite the logarithm: \[ \log_3 9 = \log_3 (3^2) \] Using the logarithmic identity \(\log_b (a^m) = m \cdot \log_b a\), we have: \[ \log_3 (3^2) = 2 \cdot \log_3 3 \] Since \(\log_3 3 = 1\), we find: \[ \log_3 9 = 2 \cdot 1 = 2 \] ### Step 2: Substitute the logarithm back into the expression Now we can substitute this value back into our expression: \[ -\frac{1}{2} \log_3 9 = -\frac{1}{2} \cdot 2 = -1 \] ### Step 3: Substitute into the power of 3 Now we substitute \(-1\) back into the expression for \(3\): \[ 3^{-\frac{1}{2} \log_3 9} = 3^{-1} \] ### Step 4: Calculate the final value We know that: \[ 3^{-1} = \frac{1}{3} \] Thus, the final value of \(3^{-\frac{1}{2} \log_3 9}\) is: \[ \frac{1}{3} \] ### Final Answer: \(\frac{1}{3}\) ---
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2+log_3 5)

Find the value of 3^(2log_(9)3) .

The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

The value of |[log_3 1024, log_3 3],[log_3 8, log_3 9]| xx|[log_2 3, log_4 3],[log_3 4, log_3 4]|

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))