Home
Class 14
MATHS
(log(a)n)/(log(ab)n)=1+log(a)b...

`(log_(a)n)/(log_(ab)n)=1+log_(a)b`

A

`1+log_a b`

B

`1+log_b a`

C

`log_a b`

D

`log_b a`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos
  • MISCELLANEOUS EXERCISE - III

    UPKAR PUBLICATION |Exercise QUESTION BANK|78 Videos

Similar Questions

Explore conceptually related problems

If (log_(a)N)/(log_(c)N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c)N), where N>0 and N!=1,a,b,c>0 and not equal to 1, then prove that b^(2)=ac

_m^( If );n;a>0;a!=1;log_(a)(mn)=log_(a)m+log_(a)n

Properties of logarithmic function Property (5)log_(a)(x^(n))=n log_(a)|x|(6)log_(a)^(n)x^(m)=(m)/(n)log_(a)x(7)x^(log_(a)y)=y^(log_(a)x)

m;n;a>0;a!=1;log_(a)((m)/(n))=log_(a)m-log_(a)n

Suppose a,b,c gt 1 and n in N, n ge 2 . If log_(a)(n),log_(b)(n),log_(c )(n) are in A.P., then log_(a)b+log_(c )b =

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1a>dn>0 then find an expression for (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) in terms of log_(a)n and log_(c)n

Compute a([(log_(b)(log_(b)N))/(log_(b)a)) Compute a((log_(b)(log_(b)N))/(log_(b)a))

Prove the identity; (log)_(a)N log_(b)N+(log)_(b)N log_(c)N+(log)_(c)N log_(a)N=((log)_(a)N log_(b)N log_(c)N)/((log)_(abc)N)