Home
Class 14
MATHS
(2)7/9+(9)11/12div(12)17/18=?...

`(2)7/9+(9)11/12div(12)17/18=?`

A

2

B

3

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (2) \frac{7}{9} + (9) \frac{11}{12} \div (12) \frac{17}{18} \), we can break it down into manageable steps. ### Step 1: Convert mixed numbers to improper fractions First, we need to convert the mixed numbers into improper fractions. 1. **Convert \( (2) \frac{7}{9} \)**: \[ 2 \frac{7}{9} = \frac{2 \times 9 + 7}{9} = \frac{18 + 7}{9} = \frac{25}{9} \] 2. **Convert \( (9) \frac{11}{12} \)**: \[ 9 \frac{11}{12} = \frac{9 \times 12 + 11}{12} = \frac{108 + 11}{12} = \frac{119}{12} \] 3. **Convert \( (12) \frac{17}{18} \)**: \[ 12 \frac{17}{18} = \frac{12 \times 18 + 17}{18} = \frac{216 + 17}{18} = \frac{233}{18} \] ### Step 2: Substitute the improper fractions back into the expression Now we can rewrite the original expression: \[ \frac{25}{9} + \frac{119}{12} \div \frac{233}{18} \] ### Step 3: Perform the division To divide by a fraction, we multiply by its reciprocal: \[ \frac{119}{12} \div \frac{233}{18} = \frac{119}{12} \times \frac{18}{233} = \frac{119 \times 18}{12 \times 233} \] Calculating the numerator and denominator: - Numerator: \( 119 \times 18 = 2142 \) - Denominator: \( 12 \times 233 = 2796 \) So we have: \[ \frac{119}{12} \div \frac{233}{18} = \frac{2142}{2796} \] ### Step 4: Simplify the fraction \( \frac{2142}{2796} \) To simplify \( \frac{2142}{2796} \), we find the GCD of 2142 and 2796, which is 6: \[ \frac{2142 \div 6}{2796 \div 6} = \frac{357}{466} \] ### Step 5: Add the fractions Now we need to add \( \frac{25}{9} + \frac{357}{466} \). To do this, we need a common denominator. The least common multiple (LCM) of 9 and 466 is 4194. 1. Convert \( \frac{25}{9} \): \[ \frac{25}{9} = \frac{25 \times 466}{9 \times 466} = \frac{11650}{4194} \] 2. Convert \( \frac{357}{466} \): \[ \frac{357}{466} = \frac{357 \times 9}{466 \times 9} = \frac{3213}{4194} \] Now we can add the two fractions: \[ \frac{11650}{4194} + \frac{3213}{4194} = \frac{11650 + 3213}{4194} = \frac{14863}{4194} \] ### Step 6: Final simplification Now, we check if \( \frac{14863}{4194} \) can be simplified. The GCD of 14863 and 4194 is 1, so it is already in its simplest form. ### Final Answer Thus, the final answer is: \[ \frac{14863}{4194} \]
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS EXERCISE -II

    UPKAR PUBLICATION |Exercise QUESTION BANK |88 Videos
  • MISCELLANEOUS EXERCISE -VI

    UPKAR PUBLICATION |Exercise QUESTION BANK |62 Videos

Similar Questions

Explore conceptually related problems

Find the diffrence: (i) (5)/(9)-(2)/(9) (ii) (11)/(12)-(7)/(12)

Find the value of 1"" (7)/(9) + (5)/(12) + (7)/(18)

Arrange the following fraction in descending order: (7)/(9), (5)/(12), (11)/(18) and (17)/(36)

Which of the following fractions is greatest (7)/(12), (11)/(16), (12)/(17), (13)/(18), (31)/(36) ?

Which of the following fractions is greatest (7)/(12), (11)/(16), (12)/(17), (13)/(18), (31)/(36) ?

9.09div(10)/(11)xx(0.96)/(3333)div(0.12)/(88)=?

12(1)/(3)-(8)/(9)+(11)/(3)-4(11)/(9)=?

Which one of the following is true? 1/2<9/(13)<3/4<(12)/(17) (b) 3/4<9/(13)<1/2<(12)/(17) (c) 1/2<3/4<9/(13)<(12)/(17) (d) 1/2<9/(13)<(12)/(17)<3/4