Home
Class 12
MATHS
The least value of the function f(x)= 2c...

The least value of the function `f(x)= 2cosx +x` in the closed interval `[0,pi/2]` is:
A. 2
B. `pi/6 + sqrt3`
C. `pi/2`
D. The least value does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2) \ i s

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The maximum value of (1+cosx)sinx in interval 0lexle pi/2 is for (A) x =pi/2 (B) x= pi/6 (C) x=0 (D) x= pi/3

Difference between the greatest and least values opf the function f (x) = int _(0)^(x) (cos ^(2) t + cos t +2) dt in the interval [0, 2pi] is K pi, then K is equal to:

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot