Home
Class 12
MATHS
If 2^x-2^y=2^(x+y) then dy/dx= (a)(2^x...

If `2^x-2^y=2^(x+y)` then `dy/dx=`
(a)`(2^x+2^y)/(2^x-2^y)`
(b)`(2^x+2^y)/(1+2^(x+y))`
(c)`(2^(x-y))(1-2^y)/(2^x+1)`
(d)`(2^x-2^y)/(2^x+2^y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x)+2^(y)=2^(x+y), then (dy)/(dx) is equal to -(2^(y))/(2^(x))(b)(1)/(1-2^(x))1-2^(y)(d)(2^(x)(1-2^(y)))/(2^(y)(2^(x)-1))

(dy)/(dx)=(x+y+1)/(2x+2y+3)

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

if 2^(x)+2^(y)=2^(x+y) then the value of (dy)/(dx) at x=y=1

If x^(2)+y^(2)=1 then (y'=(dy)/(dx),y''=(d^(2)y)/(dx^(2)))

Solve: (dy) / (dx) = (y (x + 2y)) / (x (2x + y)), y (1) = 2

(y^(2))/(x^(2))(dx)/(dy)=(y+1)/(x+1)

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=