Home
Class 12
MATHS
If x^py^q=(x+y)^(p+q) , then dy/dx= (a)...

If `x^py^q=(x+y)^(p+q)` , then `dy/dx=`
(a) `x/y`
(b) `y/x`
(c) `x/(x+y)`
(d) `y/(y+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)y^(n)=(x+y)^(m+n), then (dy)/(dx) is (x+y)/(xy) (b) xy (c) (x)/(y) (d) (y)/(x)

If (x+y)^(m+n)=x^my^n then dy/dx= (A) x/y (B) -y/x (C) -x/y (D) y/x

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If [x+y]^(a+b)=x^a.y^b then dy/dx = (a) y/x (b) x/y (c) y/(a+x) (d) x/(b+y)

If x^(y) y^(x)=(x+ y)^(x+y).then (dy)/(dx)=

(c) If y=(x)/(x+y) , then (dy)/(dx) =:

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x