Home
Class 12
MATHS
80.The value of Lt(n rarr oo)n^((1)/(n))...

80.The value of `Lt_(n rarr oo)n^((1)/(n))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

lim_(n rarr oo)3^(1/n) equals

The value of lim_(n->oo) n^(1/n)

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to