Home
Class 9
MATHS
1+(sqrt(2))/(2-sqrt(2)) is equal to...

`1+(sqrt(2))/(2-sqrt(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(2)=1. 4142 , then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to

If sqrt(2)=1. 4142 , then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to (a) 0.1718 (b) 5.8282 (c) 0.4142 (d) 2.4142

(sqrt(3)-1/(sqrt(3)))^2 is equal to

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

The value of |-1 2 1 3+2sqrt(2) 2+2sqrt(2) 1 3-2sqrt(2) 2-2sqrt(2) 1| is equal to a. zero b. -16sqrt(2) c. -8sqrt(2) d. none of these

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

The value of |{:(-1,,2,,1),(3+2sqrt(2),,2+2sqrt(2),,1),(3-2sqrt(2),,2-2sqrt(2),,1):}| is equal to

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)