Home
Class 11
MATHS
Prove that, (sin (x/2)-cos (x/2))^(2)=1-...

Prove that, `(sin (x/2)-cos (x/2))^(2)=1-sinx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sinx-sin3x)/(sin^2x-cos^2x)=2sinx

Prove that (1+cos x)/(sin x) = (cos( x/2))/(sin (x/2))

Prove that sinx/cos(3x)+sin(3x)/cos(9x)+sin(9x)/cos(27x)=1/2 (tan27x-tanx)

Prove that cos 2xcos(x/2)-cos 3x cos((9x)/2)= sin5x sin((5x)/2) .

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Prove that : (sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

Prove that 3(sinx-cosx)^4+4(sin^6x+cos^6x)+6(sinx+cosx)^2=13

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

prove that sin2x+2sin4x+sin6x=4cos^(2)x.sinx