Home
Class 12
MATHS
The value of definite integral int((pi)/...

The value of definite integral `int_((pi)/((pi)/(2)))^((2 pi)/(3))(e^(-theta/2)sqrt(1-sin theta))/(1+cos theta)d theta` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4 , then tan theta is equal to

The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to