Home
Class 12
MATHS
(11) int(0)^(1)(e^x-e^-x)/(e^x+e^-x)dx...

(11) `int_(0)^(1)(e^x-e^-x)/(e^x+e^-x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(1)(dx)/(e^(x)+e^(-x))

inte^x/(e^x+e^(-x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

int (e^x+e^{-x})(e^x-e^{-x}) dx

Evaluate the integral as limit of sum: int_(0)^(1) (e^(2x)-e^(x) +x) dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1) x e^(x) dx=1