Home
Class 12
MATHS
Let f(a) = int0^a(ln(1+tana. tanx)dx th...

Let `f(a) = int_0^a(ln(1+tana. tanx)dx ` then `f'(pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(n) = int_0^a ln(1+tanatanx)dx. , then f'(pi/4) equals :

let f(a)=int_(0)^(a)ln(1+tan a tan x)dx then f'((pi)/(4)) equals

int_0^pi tanx/(sinx+tanx)dx

8. int_0^(pi/4) log(1+tanx)dx

int_0^a log (cota+ tanx)dx where a in (0,pi/2) is

Evaluate : int_0^(pi/4)log(1+tanx)dx .

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

Evaluate : int_0^(pi/4)log(1+tanx)dxdot

Find I=int_0^pi ln(1+cosx)dx

Evaluate : int_(0)^(pi/2)log(tanx)dx