1.(i) If

Promotional Banner

Similar Questions

Explore conceptually related problems

The conjugate of a complex number is 1/(i-1) . Then the complex number is (1) (-1)/(i-1) (2) 1/(i+1) (3) (-1)/(i+1) (4) 1/(i-1)

The value of 1/(i^n) + 1/(i^(n + 3)) + 1/(i^(n + 2)) + 1/(i^(n + 1)) is :

The value of (1)/(1-i)-(1)/(1+i) is

Value of [(x^i)^(1-1/i)]^(1/(i - 1)) is :

If ((1+i) z= (1-i))bar(z), then

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

The reflection of the complex number (2-i)/(3+i) (where i=sqrt(-1) in the straight line z(1+i)=bar(z)(i-1) is (-1-i)/(2) (b) (-1+i)/(2)(i(i+1))/(2) (d) (-1)/(1+i)

The value of (i^(5)+i^(6)+i^(7)+i^(8)+i^(9))/(1+i) is (1)/(2)(1+i)(b)(1)/(2)(1-i)(c)1(d)(1)/(2)

find the square roots of the following: (i) 1-i (ii) 1+i .

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"