Home
Class 14
MATHS
If x^2+1/x^2=34, then find the value of ...

If `x^2+1/x^2=34`, then find the value of `x+1/x`

A

4

B

6

C

8

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 34 \) and find the value of \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Use the identity We know that: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] Let \( y = x + \frac{1}{x} \). Then we can rewrite the equation as: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] ### Step 2: Substitute the given value Substituting the given value into the equation: \[ y^2 - 2 = 34 \] ### Step 3: Solve for \( y^2 \) Add 2 to both sides: \[ y^2 = 34 + 2 \] \[ y^2 = 36 \] ### Step 4: Take the square root Now, take the square root of both sides: \[ y = \sqrt{36} \] \[ y = 6 \quad \text{(since \( x + \frac{1}{x} \) is positive)} \] ### Conclusion Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+1/x^2=17/4 then find the value of x^2-1/x^2

If x -1/x = 5 , then find the value of ( x^2 + 1/x^2 )^( 1/3 )

If x + 1/x = 8 and x - 1/x = -8 , then find the value of x^2 - 1/(x^2)

If (x +1/x) = 2 , then find the value of (x^3 + 1//x^3) + (x^(18) + 1//x^(18))

If 2^(x+1)=3^(1-x) then find the value of x.

If f(x+1/x)=x^2+1/x^2 then find the value of f(x)

If 2^(x+1)=3^(1-x) then find the value of x