Home
Class 14
MATHS
What is the value of cot15^@cot20^@cot70...

What is the value of `cot15^@cot20^@cot70^@cot75^@`

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot 15^\circ \cdot \cot 20^\circ \cdot \cot 70^\circ \cdot \cot 75^\circ \), we can use the property of cotangent that states: \[ \cot(90^\circ - \theta) = \tan(\theta) \] This means that: \[ \cot 70^\circ = \tan 20^\circ \quad \text{and} \quad \cot 75^\circ = \tan 15^\circ \] ### Step-by-step Solution: 1. **Rewrite cotangent using the complementary angle property**: \[ \cot 70^\circ = \tan 20^\circ \quad \text{and} \quad \cot 75^\circ = \tan 15^\circ \] 2. **Substitute these values into the original expression**: \[ \cot 15^\circ \cdot \cot 20^\circ \cdot \tan 20^\circ \cdot \tan 15^\circ \] 3. **Notice that \( \cot \theta \) and \( \tan \theta \) are reciprocals**: \[ \cot 15^\circ \cdot \tan 15^\circ = 1 \quad \text{and} \quad \cot 20^\circ \cdot \tan 20^\circ = 1 \] 4. **Combine these results**: \[ 1 \cdot 1 = 1 \] Thus, the value of \( \cot 15^\circ \cdot \cot 20^\circ \cdot \cot 70^\circ \cdot \cot 75^\circ \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of cot35^@ cot40^@ cot45^@ cot50^@ cot55^@ ? cot35^@ cot40^@ cot45^@ cot50^@ cot55^@ का मान क्या है ?

Find the value of cot10^(@).cot20^(@).cot60^(@).cot70^(@).cot80^(@) .

What is the value of tan75^ @+ cot75^@ ?

The value of cot10^@ cot20^@ cot60^@ cot 70^@ cot 80^@ is

What is the value of (cot224^@-cot134^@)/(cot226^@+cot316^@) ?

What is the value of cot(90^@+75)^@ ? cot(90^@+75)^@ का मान क्या है?

What is cot 15 ^(@)cot 20^(@) cot 70^(@) cot 75 ^(@) equal to ?

If tan 15^@=2-sqrt3 , then the value of tan15^@ cot 75^@+tan75^@ cot 15^@ is

If tan15^(@)=2-sqrt(3) then value of tan15^(@)cot75^(@)+tan75^(@)cot15^(@) is

If tan15^(@)=2-sqrt(3) , the value of tan15^(@)cot75^(@)+tan75^(@)cot15^(@) is