Home
Class 14
MATHS
What is the square root of (0.324xx0.64x...

What is the square root of `(0.324xx0.64xx129.6)/(0.729xx1.024xx36`

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square root of the expression: \[ \frac{0.324 \times 0.64 \times 129.6}{0.729 \times 1.024 \times 36} \] ### Step 1: Remove the decimals To simplify the calculations, we can eliminate the decimals by multiplying both the numerator and the denominator by \(10^6\) (since the largest number of decimal places is 3). This gives us: \[ \frac{0.324 \times 10^6 \times 0.64 \times 10^6 \times 129.6 \times 10^6}{0.729 \times 10^6 \times 1.024 \times 10^6 \times 36 \times 10^6} \] Calculating the new values: \[ = \frac{324 \times 640 \times 129600}{729 \times 1024 \times 3600} \] ### Step 2: Simplify the expression Now we can simplify the expression step by step. 1. **Numerator**: - \(324 = 18^2\) - \(640 = 64 \times 10 = 8^2 \times 10\) - \(129600 = 1296 \times 100 = 36^2 \times 100\) So, the numerator becomes: \[ 324 \times 640 \times 129600 = 18^2 \times (8^2 \times 10) \times (36^2 \times 100) \] 2. **Denominator**: - \(729 = 27^2\) - \(1024 = 32^2\) - \(3600 = 60^2\) So, the denominator becomes: \[ 729 \times 1024 \times 3600 = 27^2 \times 32^2 \times 60^2 \] ### Step 3: Further simplification Now we can rewrite the expression as follows: \[ \frac{(18 \times 8 \times 36)^2 \times 1000}{(27 \times 32 \times 60)^2} \] ### Step 4: Taking the square root Now we can take the square root of the entire expression: \[ \sqrt{\frac{(18 \times 8 \times 36)^2 \times 1000}{(27 \times 32 \times 60)^2}} = \frac{18 \times 8 \times 36 \times \sqrt{1000}}{27 \times 32 \times 60} \] ### Step 5: Calculate the values 1. Calculate the numerator: - \(18 \times 8 = 144\) - \(144 \times 36 = 5184\) So, the numerator is: \[ 5184 \times \sqrt{1000} \] 2. Calculate the denominator: - \(27 \times 32 = 864\) - \(864 \times 60 = 51840\) ### Step 6: Final simplification Now we have: \[ \frac{5184 \times \sqrt{1000}}{51840} \] This simplifies to: \[ \frac{1}{10} \times \sqrt{1000} = \frac{1}{10} \times 10\sqrt{10} = \sqrt{10} \] ### Final Result Thus, the square root of the original expression is: \[ \sqrt{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the square root of (0.324 xx 0.64 xx 129.6)/(0. 729 xx 1. 0 24 xx 36) ?

Find the square root of (0.204xx4.2)/(0.007xx3.4)

Evaluate the square root of (0.342xx0.684)/(0.000342xx0.000171)

The square root of (0.324xx0.081xx4.624)/(1.5625xx0.0289xx72.9xx64) is (A) 24 (B) 2.4 (C) 0.024 (D) 1.2

What is the value of (5.6xx0.36+0.42xx3.2)/(0.8xx2.1) ?

(0.32xx0.64)/(0.016xx0.0008)