Home
Class 14
MATHS
What is the value of {(1-sin^2theta) sec...

What is the value of `{(1-sin^2theta) sec^2theta + tan^2theta} (cos^2theta + 1)`, where `0^@ lt theta lt 90^@`?

A

`2`

B

`gt 2`

C

`lt 2`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\{(1 - \sin^2 \theta) \sec^2 \theta + \tan^2 \theta\} (\cos^2 \theta + 1)\), we can follow these steps: ### Step 1: Simplify \(1 - \sin^2 \theta\) Using the Pythagorean identity, we know that: \[ 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 2: Substitute into the expression Now, substitute \(1 - \sin^2 \theta\) into the expression: \[ \{(1 - \sin^2 \theta) \sec^2 \theta + \tan^2 \theta\} = \{\cos^2 \theta \sec^2 \theta + \tan^2 \theta\} \] ### Step 3: Simplify \(\cos^2 \theta \sec^2 \theta\) Recall that \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\), thus: \[ \cos^2 \theta \sec^2 \theta = \cos^2 \theta \cdot \frac{1}{\cos^2 \theta} = 1 \] So the expression becomes: \[ 1 + \tan^2 \theta \] ### Step 4: Use the identity \(1 + \tan^2 \theta\) From the trigonometric identity, we know: \[ 1 + \tan^2 \theta = \sec^2 \theta \] Thus, we can rewrite the expression as: \[ \sec^2 \theta \] ### Step 5: Multiply by \((\cos^2 \theta + 1)\) Now we need to multiply this result by \((\cos^2 \theta + 1)\): \[ \sec^2 \theta (\cos^2 \theta + 1) \] ### Step 6: Substitute \(\sec^2 \theta\) Substituting \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\): \[ \frac{1}{\cos^2 \theta} (\cos^2 \theta + 1) = \frac{\cos^2 \theta + 1}{\cos^2 \theta} \] ### Step 7: Simplify the expression This can be simplified to: \[ \frac{\cos^2 \theta}{\cos^2 \theta} + \frac{1}{\cos^2 \theta} = 1 + \sec^2 \theta \] ### Final Expression Thus, the final value of the expression is: \[ 1 + \sec^2 \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of , [(1-sin^(2)theta)sec^(2)theta +tan^(2)theta](cos^(2)theta +1) , where 0 lt theta lt 90^(@) ?

If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@ , then tan theta is equal to

For what value of theta , is (tan theta + cosec theta) = 2.5 where 0 lt theta le 90^(@) ?

What is the value of [1-tan(90-theta)+sec(90-theta)]//[tan(90-theta)+sec(90-theta)+1] ?

If (cos ^(2) theta - 1) ( 2 sec ^(2) theta) + sec ^(2) theta + 2 tan ^(2) theta = 2 , 0 ^(@) lt theta lt theta lt 90^(@) , then (( "cosec" theta + cos theta))/(( "cosec theta - cos theta)) is equal to :

If sintheta = sqrt3 costheta, 0^circ lt theta lt 90^circ , then the value of 2sin^(2)theta + sec^(2)theta + sin theta sec theta + cosec theta is: यदि sintheta = sqrt3 costheta, 0^circ lt theta lt 90^circ , , तो 2sin^(2)theta + sec^(2)theta + sin theta sec theta + cosec theta का मान है:

What is the value of ([tan(90-theta)+sec(90-theta)-1])/([tan(90-theta)-sec(90-theta)+1]) ?

If (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , then the value of sin^(2) theta + cot^(2) theta + sec^(2) theta is: यदि (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , है,तो sin^(2) theta + cot^(2) theta + sec^(2) theta का मान हैः