Home
Class 14
MATHS
root(3)(x)/2.56=100/x, then 'x' is equal...

`root(3)(x)/2.56=100/x`, then 'x' is equal to:

A

4

B

16

C

64

D

256

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sqrt[3]{x}}{2.56} = \frac{100}{x}\), we will follow these steps: ### Step 1: Cross-multiply the equation We start with the given equation: \[ \frac{\sqrt[3]{x}}{2.56} = \frac{100}{x} \] Cross-multiplying gives us: \[ \sqrt[3]{x} \cdot x = 100 \cdot 2.56 \] ### Step 2: Simplify the left side The left side can be rewritten using the property of exponents: \[ \sqrt[3]{x} = x^{1/3} \] Thus, we have: \[ x^{1/3} \cdot x = x^{1/3 + 1} = x^{4/3} \] So the equation now looks like: \[ x^{4/3} = 100 \cdot 2.56 \] ### Step 3: Calculate the right side Now we calculate \(100 \cdot 2.56\): \[ 100 \cdot 2.56 = 256 \] So we now have: \[ x^{4/3} = 256 \] ### Step 4: Solve for \(x\) To isolate \(x\), we raise both sides to the power of \(\frac{3}{4}\): \[ x = 256^{3/4} \] ### Step 5: Simplify \(256^{3/4}\) First, we express \(256\) as a power of \(2\): \[ 256 = 2^8 \] Now substituting this into our equation: \[ x = (2^8)^{3/4} \] Using the property of exponents, we multiply the exponents: \[ x = 2^{8 \cdot \frac{3}{4}} = 2^{6} = 64 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{64} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If l=int(dx)/(root(3)((x+1)^(2)(x-1)^(4)))=kroot(3)((1+x)/(1-x))+c , then k is equal to

If root(3)(32) = 2^x , then x is equal to

Let x=root(3)(2+sqrt5)+root(3)(2-sqrt5), then x^3+3x is equal to (i)1 (ii)2 (iii)3 (iv)4

If 2^(x)=root(3)(32), then x is equal to a.5b.3c.(3)/(5) d.(5)/(3)

int(x+root(3)(x^(2))+root(6)(x))dx is equal to

If f(x)=27x^(3)+(1)/(x^(3)) and alpha,beta are the roots of the equation 3x+(1)/(x)=2, then -f(alpha) is equal to

If 99xx21-root(3)(x)=1968 then x equals

If ""^(n)C_(x) = 56 and ""^(n)P_(x) = 336 , then n is equal to