Home
Class 11
MATHS
Show that sin alpha = sqrt(1-cos^2 alpha...

Show that `sin alpha = sqrt(1-cos^2 alpha)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : sin^6 alpha+ cos^6 alpha ge 1/4

If int((sin^((3)/(2))x+cos^((3)/(2))x)dx)/(sqrt(sin^(3)x cos^(3)x sin(x-alpha)))=a sqrt(cos alpha tan x-sin alpha)+b sqrt(cos alpha-sin alpha cot x)+c then

If 5tan alpha=4, show that (5sin alpha-3cos alpha)/(5sin alpha+2cos alpha)=(1)/(6)

If (2sin alpha) / ({1 + cos alpha + sin alpha}) = y, then ({1-cos alpha + sin alpha}) / (1 + sin alpha) =

If alpha_(1),alpha_(2)………., alpha_(n) are real numbers show that (cos alpha_(1)+cos alpha_(2)+…..+cos alpha_(n))^(2)+(sin alpha_(1)+……+sin alpha_(n))^(2) le n^(2)

.If alpha+beta=90^(@), show that sqrt(cos alpha*csc beta-cos alpha*sin beta) = sin alpha

If alpha in [(pi)/(2),pi] then the value of sqrt(1+ sin alpha)-sqrt(1 - sin alpha) is equal to

Sum: sqrt(1 + sin 2alpha) + sqrt(1 + sin 4alpha) + sqrt(1 + sin 6alpha) +... to 20 terms.

If alpha and beta satisfying the equation sin alpha+sin beta=sqrt(3)(cos alpha-cos beta), then