Home
Class 12
MATHS
∫sec^3 x dx...

`∫sec^3 x dx`

Text Solution

Verified by Experts

Let `I=int sec^(3)x dx " d"=int secx sec^(2)x dx`
`=int sqrt(1+tan^(2)x)sec^(2)x dx`
Put `tan x=z " and " sec^(2)x dx=dz`
` :. I=int sqrt(1+z^(2))dz`
`=(zsqrt (z^(2)+1))/(2)+(1)/(2)log|z+sqrt(z^(2)+1)|+C`
` =(tanx sec x)/(2)+(1)/(2)log|tanx +secx| +C`
`=(1)/(2)[secx tanx + log|secx +tanx|] +C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int sec^3x dx

int sec^4 x dx

∫Sec^(2/3)x cosec^(4/3)x dx

int sec x dx=

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

(i) int cosec x dx =____ (ii) int sec x dx= ____

int x^(2)sec x^(3)dx