Home
Class 12
MATHS
I=int(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)d...

`I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int_0^(pi/2)1/(1+tan^2x)dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ dx

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to