Home
Class 12
MATHS
lim(h rarr0) (cos(x+h)-cos x)/(h)...

`lim_(h rarr0) (cos(x+h)-cos x)/(h)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x(cosec x)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(n rarr0)(2-cot x)

Let f(x) is a function continuous for all x in R except at x = 0 such that f'(x) lt 0, AA x in (-oo, 0) and f'(x) gt 0, AA x in (0, oo) . If lim_(x rarr 0^(+)) f(x) = 3, lim_(x rarr 0^(-)) f(x) = 4 and f(0) = 5 , then the image of the point (0, 1) about the line, y.lim_(x rarr 0) f(cos^(3) x - cos^(2) x) = x. lim_(x rarr 0) f(sin^(2) x - sin^(3) x) , is

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x rarr0)sqrt(x)=

6. lim_(h rarr0)(log(e^(3)+h)-3)/(h)

If lim_(x rarr 0) (cos4x+a cos2x+b)/x^4 is finite then the value of a,b respectively

lim_(x rarr0)(1-cos 2x)/(x^(2))

3) lim_(x rarr0)[(1)/(x)-cot x]