Home
Class 12
MATHS
If z(x+y)= x^2 +y^2 show that (frac{de...

If `z(x+y)= x^2 +y^2` show that
`(frac{delz}{delx}-frac{del z}{del y})^2` =`4 (1- frac{delz}{delx}+frac{delz}{dely})`

Promotional Banner

Similar Questions

Explore conceptually related problems

x frac{dy}{dx} = y - xcos^2 frac{y}{x}

frac{dP}{dx} = frac{d}{dx} (x^3) (frac{7-2x}{3})^(4)

If 2^x = 3^y =12^z show that 1/z= 1/y+2/x

dy/dx = frac{2x+y}{x}

solve the equations: frac{2}{sqrt x} + frac{3}{sqrt y} =2 and frac{4}{sqrt x} - frac{9}{sqrt y} =-1

(i) If u=x^2y++y^2z+z^2x , show that frac{lambdau}{lambdax}+frac{lambdau}{lambday}+frac{lambdau}{lambdaz}=(x+y+z)^2

int frac {dx}{x(x^4+1)

\lim _{x\to 0}(\frac{1}{e^x-1}-\frac{1}{x}\)

int frac{dx}{(1-x)sqrtx}

If u=(x^(2)+y^(2)+z^(2))^(-1/2) show that x(del u)/(del x)+y(del u)/(del y)+z(del u)/(del z)=-u