Home
Class 10
MATHS
Prove that, (c+a-b)/(2)=a sin^(2)(C/2)+c...

Prove that,
`(c+a-b)/(2)=a sin^(2)(C/2)+csin^(2)(A/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any o+ABC, prove that: 2{a sin^(2)(C)/(2)+csin^(2)(A)/(2)}=a+c-b

In any Delta ABC, prove that :2(a sin^(2)((C)/(2))+c sin^(2)((A)/(2)))=a+c-b

In triangle ABC , with the usual notations , prove that 2{a sin^(2).(C)/(2)+csin^2.(A)/(2)}=a+c-b

In o+ABC, prove that (a-b^(2)cos^(2)(C)/(2)+(a+b)^(2)sin^(2)(C)/(2)=c^(2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

In Delta ABC, prove that: (cot((A)/(2))+cot((B)/(2)))(a sin^(2)((B)/(2))+b sin^(2)((A)/(2)))=c cot((C)/(2))

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

In any DeltaABC , prove that (a-b)^(2)cos^(2)""C/2+(a+b)^(2)sin^(2)""C/2=c^(2).