Home
Class 12
MATHS
prove (1 + tan^2A) / (1 + cot^2A) = [(1 ...

prove `(1 + tan^2A) / (1 + cot^2A) `= `[(1 - tan A) `/`(1 - cotA)]`^2`=`tan^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that ((1-tanA)/(1-cotA))^2=tan^2A

Prove: (1-tan^2A)/(cot^2A-1)=tan^2A

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (x) ((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A

Prove: (1+tan^2theta)/(1+cot^2theta)=((1-tantheta)/(1-cottheta))^2=tan^2theta

(1+tan^2A)/(1+cot^2A) is equal to sec^2A (b) -1 (c) cot^2A (d) tan^2A

Prove that (2 tan A) /(1+ tan ^(2) A) = sin 2 A.

Prove that : (cot A - 1)/ (2 - sec^(2) A) = (cot A)/ (1 + tan A)

Prove that : (tan A)/ (1 - cot A) + (cot A)/ (1 - tan A) = sec A cosec A + 1

Prove that 1+tan^2A/(1+secA)=secA

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)