Home
Class 8
MATHS
If two positive integers a and b are wri...

If two positive integers `a` and `b` are written as `a=x^(3)y^(2)` and `b=xy^(3);x,y` are prime numbers then `HCF(a,b)` is (a) `xy` (b) `xy^(2)` (c) `x^(3)y^(3)` (d) `x^(2)y^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

Thrice x added to y squared is written as: (a) 3x y^2 (b) x^2+y (c) x+y^2 (d) 3x+y^2

Divide 14x^(3)y^(2) + 8x^(2)y^(3) - 22xy^(4) " by " -2xy^(2)

(x+y)^3−(x−y)^3 can be factorized as (a) 2y(3x^2+y^2) (b) 2x(3x^2+y^2) (c) 2y(3y^2+x^2) (d) 2x(x^2 +3y^2)

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

Find the real numbers (x,y) that satisfy the equation: xy^(2) = 15x^(2) +17xy + 15y^(2) x^(2)y = 20x^(2) + 3y^(2)

Multiply : 3 - (2)/(3)xy + (5)/(7)xy^(2) - (16)/(21)x^(2)y by -21 x^(2)y^(2)

if sintheta = x and sectheta = y, then tantheta is : (a)xy, (b) x/y , (c) y/x , (d) 2/(xy)

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Find the sum of n terms of the series (x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+xy^(2)+y^(3))+...