Home
Class 8
MATHS
Find the value of sqrt((x+2sqrt((x-1)))]...

Find the value of `sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))]` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sqrt(x-4-2sqrt((x-5)))-sqrt(x-4+2sqrt((x-5)))

Find the value of x in sqrt(x+2sqrt(x+2sqrt(x+2sqrt(3x))))...=x.

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

Complete set of solution of inequation sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>3/2

Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(4-sqrt(x^2))

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

Find number of solutions of the equation sqrt((x+8)+2sqrt(x+7))+sqrt((x+1)-sqrt(x+7))=4

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is