Home
Class 12
MATHS
int2^4(t^2+3t)dt=?...

`int_2^4(t^2+3t)dt=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If A(x)=int_(0)^(x)t^(2) dt, then : A (3) =

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

int t/(t+b^2) dt