Home
Class 12
MATHS
Find the point of inflection of the func...

Find the point of inflection of the function: `f(x)=sin x` (a) `0` (b) `n pi,n in Z` (c) `(2n+1)(pi)/(2),n in Z` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is not the general solution of 2^(cos2x)+1=3. 2^(-sin^2 x)? (a) npi,n in Z (b) (n+1/2)pi,n in Z (c) (n-1/2)pi,n in Z (d) none of these

If the only point of inflection of the function f(x)-(x-a)^m(x-b)^n , m, n e N and m!=n is at x=a then

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these

The solution of the equation sin^3x+sinxcosx+cos^3x=1 is (n∈N) (a) 2npi (b) (4n+1)pi/2 (c) (2n+1)pi (d) None of these

Which of the following is not the solution of the equation sin5x=16sin^5x(n in Z)? (a) npi (b) npi+pi/6 (c) npi-pi/6 (d) none of these

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (c) (0,pi) (d) none of these

The domain of definition of the function f(x)=sqrt(-cosx)+sqrt(sinx) is: [2npi,2npi+pi/2],n in I b. [2npi,(2n+1)pi],n in I c. [2n+1/2pi(2n+1)pi],n in I d. [(2n+1)pi,(2n+3/2)pi],n in I

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (0,pi) (d) none of these

If A=[costheta-sinthetasinthetacostheta] , then A^T+A=I_2 , if theta=npi,\ \ n in Z (b) theta=(2n+1)pi/2,\ \ n in Z (c) theta=2n\ pi+pi/3,\ \ n in Z (d) none of these