Home
Class 11
MATHS
If the angles of /ABC are in ratio 1:1:2...

If the angles of `/_ABC` are in ratio `1:1:2` respectively (the largest angle being `C` ),then the value of `(sec A)/(cosec B)-(tan A)/(cot B)` is (a) `0` (b) `1/2` (c) `1` (d) `sqrt(3)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angles of ∆ABC are in ratio 1:1:2, respectively (the largest angle being angle C), then the value of s e c A c o s e c B secAcosecB - t a n A c o t B tanAcotB is (a) 0 (b) 1/2 (c) 1 (d) √3/2

A triangle ABC is right angled at B, find the value of (sec A . cosec C - tan A . cot C)/(sin B)

What is the value of (tan theta cosec theta)^(2)-(sin theta sec theta)^(2) (a) -1 (b) 0 (c) 1 (d) 2

(1+tan^2A)/(1+cot^2A) is equal to sec^2A (b) -1 (c) cot^2A (d) tan^2A

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

sec^2(tan^(01)2)+cos e c^2(cot^(-1)3) is equal to 5 (b) 13 (c) 15 (d) 6

The angles of a triangle are in the ratio 1:2:3. The measure of the largest angle is: (a) 30^0 (b) 60^0 (c) 90^0 (d) 120^0

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is