Home
Class 11
MATHS
[log10⁡(x)]^2 − log10⁡(x^3) + 2=0...

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (log_(x) 10)^(3) -(log_(x) 10)^(2) - 6 log_(x) 10 = 0 is satisfied by a value of x given by

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

log_10⁡ (k^2/l^2) + log_10⁡ (l^2/m^2) + log_10⁡ (m^2/k^2) = ?

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

Given x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4 , find : (i) x - y - z (ii) 13^(x - y - z)