Home
Class 12
MATHS
lim(n rarr oo)n[sqrt(n+1)-sqrt(n))]...

`lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)) , is

lim_(n rarr oo)2^(1/n)

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(n rarr oo)3^(1/n) equals

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)