Home
Class 11
MATHS
log10⁡ a + log10 ⁡b = log10⁡ (a+b)...

`log_10⁡ a + log_10 ⁡b = log_10⁡ (a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log4^2_10 + log4_10

Solve the equations log_1000 |x+y| = 1/2 . log_10 y - log_10 |x| = log_100 4 for x and y

if (1+3+5-...upto n terms)/(4+7+10+...upto n terms)=20/(7log_10 X and n = log_10 x + log_10 X^1/2 + log_10 X^1/4 + ............ + oo , then x is equal to

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x

Write each of the following as single logarithm: (a) 1+ log_(2) 5" "(b) 2- log_(3) 7 (c) 2log_(10) x+3 log_(10) y - 5 log_(10) z

There are 3 number a, b and c such that log_(10) a = 5.71, log_(10) b = 6.23 and log_(10) c = 7.89 . Find the number of digits before dicimal in (ab^(2))/c .

log10 - log5