Home
Class 12
MATHS
Let f(n) = int0^a ln(1+tanatanx)dx. , th...

Let f(n) = `int_0^a ln(1+tanatanx)dx.` , then` f'(pi/4)` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(a) = int_0^a(ln(1+tana. tanx)dx then f'(pi/4)

let f(a)=int_(0)^(a)ln(1+tan a tan x)dx then f'((pi)/(4)) equals

8. int_0^(pi/4) log(1+tanx)dx

Find I=int_0^pi ln(1+cosx)dx

int_0^a log (cota+ tanx)dx where a in (0,pi/2) is

If f(pi) = 2 int_0^pi (f(x)+f^(x)) sinx dx=5 , then f(0) is equal to (it is given that f(x) is continuous in [0,pi]) . (a) 7 (b) 3 (c) 5 (d) 1

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

Evaluate : int_0^(pi/4)log(1+tanx)dx .

int{1+tanx*tan(x+A)}dx=cotA*ln|f(x)|+C then f(x) equal to