Home
Class 8
MATHS
The value of (a-b)(a+b)+(b-c)(b+c)+(c+a)...

The value of `(a-b)(a+b)+(b-c)(b+c)+(c+a)(c-a) ` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)| , is

If a+b+c=0 , then write the value of (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If a,b,c be in arithmetic progession, then the value of (a+2b-c) (2b+c-a) (a+2b+c), is

The value of the determinant |-a b c a-b c a b-c| is equal to- 0 b. (a-b)(b-c)(c-a) c. (a+b)(b+c)(c+a) d. 4a b c

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0