Home
Class 8
MATHS
The value of (2^(n+4)-2*2^(n))/(2.2^(n+3...

The value of `(2^(n+4)-2*2^(n))/(2.2^(n+3))+2^(-3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

(i) If (n!)/(2.(n-2)!): (n!)/(4!.(n-4)!) = 2:1 , find the valye of n. (ii) If ((2n)!)/(3!(2n-3)!): (n!)/(2!(n-2)!) = 44:3 , then find the value of n.

find the value of n, given : (4^(n-2)xx2^(n-5)xx6xx2^(n+3))/(3xx6^(2))=(4)/(18)

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Find the value of n, given : (2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)