Home
Class 11
MATHS
The value of (1+i)^{-1} =...

The value of `(1+i)^{-1} =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1+i)^4+(1-i)^4 is

The value of (1-i)^3/(1-i^3) is equal to

Find the value of (1+ i)^(6) + (1-i)^(6)

For a positive integer n , find the value of ( 1-i)^n(1-1/i)^ndot

For a positive integer n , find the value of (1-i)^n(1-1/i)^ndot

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

The value of 1+(1+i)+(1+i^2) +(1+i^3) =

The value of |1/(2+i) - 1/(2 -i)| is

The value of I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx is

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0