Home
Class 12
MATHS
2) int(0)^(1)tan^(-1)(1-x+x^(2))dx...

2) `int_(0)^(1)tan^(-1)(1-x+x^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

int _(0)^(1) (tan ^(-1)x)/(x ) dx =