Home
Class 12
MATHS
(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0...

`(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

3. Solve the equation: (1+x^2)tan^-1x*(dy)/(dx)+y=0

Solve the equation: (1+x^2)tan^-1x*(dy)/(dx)+y=0

If logy=tan^(-1)x , prove that : (1+x^(2)) (d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

Solve the following differential equation: (1+y^2)tan^(-1)x dx+2y(1+x^2)dy=0

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Solve the differential equation: (1+y^2) + ( x - e^(tan^-1 y) ) dy/dx = 0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .