Home
Class 11
MATHS
The value of i^n + i^-n...

The value of `i^n + i^-n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

If m,n,p,q are consecutive integers then the value of i^(m)+i^(n)+i^(p)+i^(q) is

The value of sum_(i=0)^(n)""^(n-i)C_(r),rin[1,n]capsquare is equal to :

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

i^(13)+i^(18)+i^(31)+n=0 In the equation above, what is the value of n in simplest form?

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is