Home
Class 11
MATHS
The value of lim(n->oo) n^(1/n)...

The value of `lim_(n->oo) n^(1/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____

The value of (lim)_(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!) is a. 1 b . -1 c. 0 d. none of these