Home
Class 11
MATHS
The value of 1/{n!} +1/{(n+1)!} +1/{(n+2...

The value of `1/{n!} +1/{(n+1)!} +1/{(n+2)!} =`______.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of n if: (n+1)! =12.(n-1)!

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

Find the value of n if: 2n! n! =(n+1)(n-1)(!(2n-1)!

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

The fraction exceeding its own n^(t h) power n in N) by the maximum possible value is (1/n)^(1/(n-1)) (b) (1/n)^(n-1) (1/n)^n (d) (1/n+1)^(1/(n-1))

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-1)^3 - (n-1)^3 + .... + (-1)^(n-1) 1^3

Write the value of (lim)_(n->oo)(n !+(n+1)!)/((n+1)!+(n+2)!)