Home
Class 11
MATHS
log3 (sqrt sqrt sqrt sqrt(3))...

`log_3 (sqrt sqrt sqrt sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

The value of 2(log_(sqrt(2)+1)sqrt(3-2sqrt(2))+log_((2)/(sqrt(3+1)))(6sqrt(3)-10)) is

Value of log_(6)(sqrt(2-sqrt(3))+sqrt(2+sqrt(3))) is

(sqrt(sqrt(3)+sqrt(2)) + sqrt(sqrt(3)-sqrt(2)))/sqrt(sqrt(3)+1)

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

Evaluate : ( sqrt(3) + sqrt(2)) / ( sqrt(3) - sqrt(2) + ( sqrt(3) - sqrt(2)) / ( sqrt(3) + sqrt(2)

What is (sqrt5+sqrt3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) equal to