Home
Class 11
MATHS
If f:R->R , where f(x)=x^2+1, then f^(-1...

If `f:R->R` , where `f(x)=x^2+1`, then `f^(-1)(-5)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .

If f:R to R be given by f(x)= tan x, then f^(-1)(1) is

If the function f: R->R be defined by f(x)=x^2+5x+9 , find f^(-1)(8) and f^(-1)(9) .

f:R->R defined by f(x) = x^2+5

Let f: R->R be defined as f(x)=x^2+1 . Find: f^(-1)(10)

If function f : R rarr R^(+), f(x) = 2^(x) , then f^(-1) (x) will be equal to

Let f:R→R be given by f(x)=x ^2−3 . Then, f ^(−1) is given by

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)