Home
Class 12
MATHS
int(e^(sqrt(x))*sin e^(sqrtx))/sqrtxdx...

`int(e^(sqrt(x))*sin e^(sqrtx))/sqrtxdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

Evaluate: int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx

Evaluate: int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx

Evaluate: int(e^(sqrt(x))"cos"(e^(sqrt(x))))/(sqrt(x))dx

int e^(3sqrt(x))dx

int e^(sqrtx) dx

inte^sqrtxdx

(i) int_0^1 e^sqrt(x)/sqrtxdx