Home
Class 10
MATHS
Solve : ( sqrt(2) - 1 )/ ( sqrt(2) + ...

Solve :
`( sqrt(2) - 1 )/ ( sqrt(2) + 1 ) + ( sqrt(2) + 1 )/ ( sqrt(2) - 1 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

Solve : (1)/(sqrt(2))times(1)/(sqrt(2))+(1)/(2)

tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2) =

Evaluate : Find the value of sqrt( 3 + sqrt(5)) a ) sqrt(3)/2 + 1/sqrt(2) b ) sqrt(3)/2 - 1/2 c ) sqrt(5)/2 - 1/sqrt(2) d ) sqrt(5)/sqrt(2) + 1/sqrt(2)

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

If sqrt(2) = 1.4141 then sqrt(((sqrt(2)-1))/((sqrt(2)+1)))= ?

x=(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+2)=

Solve: (2)/(sqrt(x))-(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1