Home
Class 12
MATHS
(2) (x^(2)y^(2)+xy+1)ydx+(x^(2)y^(2)-xy+...

(2) `(x^(2)y^(2)+xy+1)ydx+(x^(2)y^(2)-xy+1)xdy=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0

Using horizontal method : Add x^(2)+y^(2)- 2xy , -2x^(2)-y^(2)-2xy and 3x^(2) +y^(2) +xy

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

Equation of curve passing through (1,1) & satisfyng the differential equation (xy^(2)+y^(2)+x^(2)y+2xy)dx+(2xy+x^(2))dy=0 is

What should be added to x^(2) - y^(2) +2xy to obtain x^(2) + y^(2) + 5xy ?

(1 + xy) ydx + (1-xy)xdy = 0

Solve: y(2xy+1)dx+x(1+2xy+x^2y^2)dy=0

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Add x^2+y^2+3xy-6 and 2x^2-4y^2-xy+5

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .