Home
Class 12
MATHS
If int(1)/((x tan x+1)^(2))dx=k((tan x)...

If `int(1)/((x tan x+1)^(2))dx=k((tan x)/(x tan x+1))` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/((1+x^2)tan^(-1)x)dx

int e^(2x) " (tan x+1)"^(2) dx

Evaluate: int ((1)/(1+tan x))dx

int (1-tan^2x)/(1+tan^2x) dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

If int tan^(2) kx dx= (tan 3x)/(3)-x + C , find the value of k

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

Solve: int_(-1)^(1)x tan^(-1)x dx

tan 4x = (4tan x(1-tan^2 x))/(1-6tan^2 x + tan^4 x