Home
Class 11
MATHS
The fundamental period of the function f...

The fundamental period of the function `f(x)=|sin2x|+|cos2x|` is `(A) (pi)/(2) (B) pi (C) 2 pi (D) (pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function |sin^3x/2|+|cos^5x/5| is 2pi (b) 10pi (c) 8pi (d) 5pi

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Period of sin^2 theta is(A) pi^2 (B) pi (C) 2pi (D) pi/2

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The length of the largest continuous interval in which the function f(x)=4x-tan2x is monotonic is (a) pi/2 (b) pi/4 (c) pi/8 (d) pi/(16)

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2) \ i s

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is